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Abstract 
In the last decades drug design and discovery changed dramatically, 

based on the one hand on previous knowledge of succesful drugs of 
medicinal chemistry, and on the other hand supported by the development of 
sophisticated and powerful new techniques such as molecular modelling, 
combinatorial chemistry, automated high-throughput screening, computer-
aided designing, deep learning, etc. For a long time drug design and 
discovery revolved around a screening approach and trial-and-error 
methods.This methodology was time consuming, laborious and expensive. 
Pharmaceutical companies and researchers aimed to minimize the time and 
cost by introducing computer-aided simulation methods and other imaginative 
techniques. Computer-aided methods, also called in silico methodologies (like 
in vivo, in vitro), have created rapid advances and revolutionarized the way 
scientists search through millions of compounds in databases, choose 
suitable designs of drugs according to targeted protein molecules and 
promote promissing novel drugs. Target-based drug discovery has enabled a 
great expansion of chemotypes and pharmacophores available for research 
and manufacture. New drugs are designed by investigating biologically active 
compounds with pharmacokinetic, pharmacodynamic, toxicological, 
therapeutic and clinical parameters, biovailability, metabolic half-life and lack 
of side effects for prolonged clinical trials. This review contains information 
and scientific investigations on various in silico methodologies for the design 
and discovery of new drugs in the last decade: In silico methodologies: Virtual 
screening, Computational biology models of cellular behaviour, Homology 
modeling in 3D protein structure, Molecular docking approach, Virtual high-
throughput screening, Quantitative structure-activity relationship methods 
(QSAR), Hologram Quantitative Strucutre Activity Relationship (HQSAR), 
Comparative molecular field analysis (CoMFA), Comparative similarity indices 
analyis (CoMSIA), 3D parmacophore mapping modeling (ligand-based and 
structure-based), Microarray analysis in drug design, Three-dimensional 
printing (3DP) of drugs and Deep learning in pharmaceutical research. These 
―in silico‖ methodologies, advanced the fields of Chemoinformatics and 
Bioinformatics with vast improvements in the last decades. 
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Introduction: New drugs, design, discovery and authorisation 

The first notable century of modern drug discovery was primarily 

driven by chemocentric approaches of medicinal chemists, based on specific 

classes of chemical compounds which were either discovered through 

ethnobotanical knowledge or derived by advanced synthetic organic 

chemistry and intuitive knowledge of basic facts about diseases. In the last 

decades medicinal chemistry used the characteristics of known drug 

structures, to develop imaginative new techniques such as molecular 

modelling, combinatorial and parallel chemistry, automated high-throughput 

screening, fragment-based screening, crystallography, and recombinant DNA 

technology. These applications have created rapid advances and 

considerable diversity of chemical-based structures that revolutionarized 

future drug discovery. Target-based drug discovery has enabled a great 

expansion of chemotypes and pharmacophores available.1,-3  

The latest discoveries of molecular biology methods and computational 

methodologies have changed dramatically drug search and designing. These 

developments influenced significantly the research plans and targets in the 

pharmaceutical industry. Pharmaceutical laboratories became increasingly 

computerized and automated. In parallel, scientific research witnessed 

synergies among university research centres, laboratories of pharmaceutical 

industry and regulatory drug agencies, all contributing to new drug discovery. 

The breakthroughs of new pharmaceuticals is matched by the increasing 

numbers of effective drugs against numerous diseases which have been 

approved by regulatory agencies (like the Food and Drug Administration, FDA 

and European Medicines Agency, EMA) in recent years and reflect the impact 

of modern drug discovery approaches.4,-6 

Discovering new drugs is one part of the story and marketing approvals 

of new medicinal products is another important phase. Drug regulations and 

approval influence both patients in need of new medicinal therapies and the 

pharmaceutical industry investing in research and development. Drug 

regulatory authorities FDA in the U.S. and EMA in Europe act as independent 

governmental third parties that decide about marketing authorisation. 

Approvals aim to balance promotion of public health by preventing that low-

quality, unsafe, or inefficacious products enter the market and support for the 
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pharmaceutical companies investing large amounts of money on the 

discovery of new drugs. On the other hand the regulation aims to promote 

public health. Regulators have to find the appropriate balance between the 

need to ensure that decision making is based on scientifically valid data and 

the need for access to new medicines. This system has been very successful 

in bringing many valuable safe and efficacious medicines to the market. The 

FDA‘s Center for Drug Evaluation and Research (CDER) approved 59 novel 

drugs in 2018, breaking its record of 53 drugs in 1996.7 

In 2018, EMA recommended 84 medicines for marketing authorisation. 

Of these, 42 had a new active substance which has never been authorised in 

the European Union (EU) before. Many of these medicines represent a 

significant improvement in their therapeutic areas; including medicines for 

children, for rare diseases and advanced therapies. Once a medicine is 

placed on the market, EMA and the EU member states continuously monitor 

the quality and the benefit/risk balance of the medicine under its authorised 

conditions of use.8 

The cost of research, development and clinical trials, of new drugs has 

increased substantially in the last decade. Recent estimates showed on new 

prescription medicines that gains marketing approval, cost drugmakers $2.6 

billion dollars (pre-tax). The research and development costs of 106 randomly 

selected new drugs were obtained from a survey of 10 pharmaceutical 

companies. In 2003 the cost per new drug was $802 and in 2013 increased to 

$1 billion dollars. Furthermore, while the average time it takes to bring a drug 

through clinical trials has decreased, the rate of success has gone down by 

almost half, to just 12%.9,10 

 

Rational approaches in drug design and discovery 

Modern design (is referred also as rational drug design) and discovery 

of new pharmaceuticals is a multi-step process depending on the biological 

target and therapeutic aims. Pharmaceutical companies have advanced 

modern methodologies in drug development, manufacturing and marketing 

aiming to reduce cost and time from discovery to practical application. New 

drugs are designed by observing the biologically active compounds with 

https://www.ema.europa.eu/en/glossary/marketing-authorisation
https://www.ema.europa.eu/en/glossary/active-substance
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pharmacokinetic, pharmacodynamic, toxicological, therapeutic and clinical 

parameters. Also, new drugs are studied for biovailability, metabolic half-life, 

lack of side effects for prolonged clinical trials.11,-13  

 
 

Figure 1. Rational Drug Design is the modern methodology for discovering 
new pharmaceuticals. Stremgaard K, Krogdgaard-Larsen P, Modsen U (Eds). 
Drug Design and Discovery. 5th edition CRC Press, Boca Raton, FL,  2016., 
Merz KM, Rjege D, Reynolds MC (Eds). Drug Design. Structures and Ligand-
based Approaches. Cambridge University Press, Cambridge- UK, 2010. 

 

The initial phase of a new drug takes place in the chemical laboratory. 

If trials show that it works well and doesn‘t cause too many side effects, it may 

be licensed. There is no typical length of time it takes for a drug to be tested 

and approved. It might take 10 to 15 years to complete all 3 phases (trials in 

volunteers I, II, III) of clinical trials before the licensing stage. Discovering and 

marketing new drugs involves a complex interaction between investors, 

industry, academia, patent laws, regulatory agencies and marketing. Since 

the early 1980's, advances in molecular biology, protein crystallography, and 

computational chemistry have greatly aided Rational Drug Design (RDD). 

Drug designging has different approaches that may be employed by drug 

discovery groups. Such as pharmacophore based approaches and structure-

based approaches depending on whether the three-dimensional structure of 

the biological target is available.14 

https://www.cancerresearchuk.org/about-cancer/find-a-clinical-trial/what-clinical-trials-are/phases-of-clinical-trials
https://www.cancerresearchuk.org/about-cancer/find-a-clinical-trial/what-clinical-trials-are/phases-of-clinical-trials
https://en.wikipedia.org/wiki/Pharmaceutical_marketing
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Computer-aided drug design (performed by computer 

simulation). Digital libraries  

Over the last decades, computer-aided drug design has emerged as a 

powerful technique playing a crucial role in the development of new drug 

molecules. Structure-based drug design and ligand-based drug design are 

two methods commonly used in computer-aided drug design that have been 

successful, but with limitations. The Molecular Dynamics Simulation (MDS) 

has become one of the most influential tool for prediction of the conformation 

of small molecules and changes in their conformation within the biological 

target.15  

 Large number of scientists in academic and industrial laboratories 

worldwide produce every year a vast number of chemical compounds which 

can have therapeutic properties. Inevitably, there is great need to store, 

manage and analyze data of these rapidly increasing chemical substances 

and  has given rise to the field known as computer-aided drug design (CADD). 

Computer-aided methodologies represent computational methods and 

collection of data resources that are used to facilitate the design and 

discovery of new drugs. Digital repositories have been developed in the last 

decades, containing detailed information on a vast number of chemicals with 

therapeutic properties. These digital libraries, offer the potential to generate 

molecular variants in their entirety, allowing the selection and sampling of 

chemical compounds with diverse characteris. They are very helpful for 

studying sequence-structure homology between protein sequences and 

structures, but also offering information for inferring binding sites and 

molecular functions. CADD now plays a critical role in the search for new 

pharmaceuticals. Current focus includes improved design and management of 

data sources, creation of computer programs to generate huge libraries of 

pharmacologically interesting compounds, development of new algorithms to 

assess the potency and selectivity of lead candidates.16 

The most important digital databases 

 

PubChem (http://pubchem.ncbi.nlm.nih.gov/), under the umbrella of National 

Institute of Health (NIH) Molecular Library Roadmap Initiative 

http://pubchem.ncbi.nlm.nih.gov/
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(http://nihroadmap.nih.gov/), provided information on the biological activities of 

more than 40 million small molecules and 19 million unique structures (2009). 

By 2019, PubChem became the world's largest collection of freely accessible 

chemical information: 96 million compounds, 236 million substances, 268 

million bioactivities, 30 million literature papers, 693 data sources, 3,175,602 

patents, 1,067,644 bioassays.  

 

The Available Chemicals Directory (ACD) from the Molecular Design 

Limited (http://www.mdli.com) serves as a central resource for docking 

studies. As of January 2009, the database details information of >571 000 

purchasable compounds, while its screening compound counterpart 

Screening Compounds Directory stores over 4.5 million unique structures. 

The ACD is an online database of commercially available chemicals that can 

be searched by structure. Pricing and supplier information for 3.2 million 

unique chemical compounds from over 800 suppliers, and is updated monthly. 

 

ZINC, a free database of purchasable compounds, contains 20, 089, 615 3D 

structures of molecules annotated with biologically relevant properties 

(molecular weight, calculated Log P and number of rotatable bonds). [ 

http://zinc.docking.org ].  

Irwin JJ, Shoichet BK. ZINC— a free database of commercially available 
compounds for virtual screening. J Chem Inform Model 45:177-182, 2005.  
 

LIGAND, provides records on 15,395 chemical compounds, 8,031 drugs, 10, 

966 carbohydrates, 5,043 enzymes, 7,826 chemical reactions and 11,113 

reactants (February 2009).  

Goto S, Okuno Y, Hattori M, et al. LIGAND: database of chemical compounds  
and  reactions in biological pathways. Nucleic Acids Res 30:402-404, 2002. 
  

DrugBank, stores detailed information on nearly 4,800 drugs, including >1350 

FDA-approved small molecule drugs, 123 FDA-approved biotech drugs, 71 

nutraceuticals and >3,243 experimental drugs.  

Wishart DS, Knox C, Guo AC, et al. DrugBank: a comprehensive resource for 
in silico drug discovery and exploration. Nucleic Acids Res 34:D668-D672, 
2006. 
 

Protein Data Bank worldwide data. The wwProtein Data Bank. It is a 

network of four organizations - Research Collaboratory for Structural 
Bioinformatics (RCSB) PDB (USA), PDB in Europe (PDBe) (Europe), PDB 
Japan (PDBj) (Japan), and the Biological Magnetic Resonance Data Bank 
(BMRB) (USA). It was established at Brookhaven National Laboratories (BNL) 
in 1971. In the 1980s the number of deposited structures began to increase 
dramatically (improved technology of the crystallographic process, nuclear 
magnetic resonance (NMR) methods). By the early 1990s the majority of 
journals required a PDB accession code and at least one funding agency 

http://nihroadmap.nih.gov/
http://www.mdli.com/
http://zinc.docking.org/
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(National Institute of General Medical Sciences). In July 2019 the PDB 
contained 142,435 structures of proteins, 3,360 nucleic acids, 7,782 
protein/nucleic acid complexes (by methods X-ray dffraction, Nuclear 
Magneitc Resonance (NMR), electron microscopy, etc). 
 
ChemDB, it started with nearly 5 million commercially available compounds. 

In 2019 the database offered 7 million chemical compounds. The current 
version of the database contains approximately 4.1 million commercially 
available compounds and 8.2 million counting isomers. 
Chen J, Swamidass SJ, Dou, Y, et al. ChemDB: a public database of small 
molecules and related chemoinformatics resources, Bioinformatics 21:4133- 
4139, 2005. The current version of the database contains approximately 4.1 
million commercially available compounds and 8.2 million counting isomers. 
 

In silico methodologies (coined after in vitro or in vivo) for 
drug design and discovery 

 

The traditional drug design and discovery was time consuming and 

very costly process, especially indentifing the drug target. Scientists involved 

in the field of research for new drugs used conventional approaches like in 

vivo (experimental animals, e.g. mice) and in vitro (cell cultures) to investigate 

therapeutic action and toxicological data. 

 In silico was coined as a new expression [pseudo-Latin for "in silicon", 

alluding to the mass use of the element silicon (Si) for computer chips] 

meaning "performed on computer or via computer simulation" in reference to 

biological experiments. This phrase was coined (1989) in a workshop "Cellular 

Automata: Theory and Applications" in Los Alamos, New Mexico, USA, as an 

allusion to the Latin phrases in vivo, in vitro, and in situ, which were commonly 

used in biology and refer to experiments in experimental animals and cell 

cultures. In silico methodologies include databases, quantitative 

structure‐activity relationships (QSAR), pharmacophores, homology, 

molecular modeling approaches, machine learning, data mining, network 

analysis tools and data analysis tools that use a powerful computer.17,18 

In the last decades various sophisticated in silico approaches 

(computer models, programmes, databases) have given a tremendous 

opportunity to research laboratories of pharmaceutical companies to identify 

new potential drug targets which in turn affect the success and time of 

performing clinical trials for new drug targets and therapeutic processes. 

https://en.wikipedia.org/wiki/Pseudo-Latin
https://en.wikipedia.org/wiki/Silicon
https://en.wikipedia.org/wiki/Latin_language
https://en.wikipedia.org/wiki/In_vivo
https://en.wikipedia.org/wiki/In_vitro
https://en.wikipedia.org/wiki/In_situ
https://en.wikipedia.org/wiki/Biology
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Similarly In silico-aided predictions for biological properties of chemicals, 

safety assessment and intestinal absorption of drugs have been developed 

over the years and results stored in databases.19,-21 

Although in theory the in silico methodologies in drug designing have 

the potential to speed the rate of discovery, reduce the need for expensive 

laboratory work (animals, cell cucltures) and the avoid the need for expensive 

clinical trials (I, II, III with participants in hospitals) of new drugs, in practice 

there are many additional practical problems and challenges in the fields of 

new drug designing. 

The ―in silico‖ methodologies, advanced the fields of Chemoinformatics 

and Bioinformatics with various improvements in the last decades. 

Chemoinformatics encompasses the design, creation, organization, 

management, retrieval, analysis, dissemination, and visualization of chemical 

information, whereas Bioinformatics is concerned with the creation and 

advancement of databases, algorithms, computational and statistical 

techniques and theory to solve formal and practical problems arising from the 

management and analysis of biological data. The principal limitation of these 

approaches is that they consider small series of structurally related 

compounds and some studies have only one target like protein. Now there are 

Chemoinformatics of multi-target approach for the in silico designs and new 

improvements encompassing various computational advances.22,23 

 

In silico methodologies. Virtual Screening (VS) 

 

Virtual screening (VS) is a computational technique used in drug 

discovery. It is a computational search in libraries of small molecules that can 

identify those chemical structures which are most likely to bind to a drug 

target, typically a protein receptor or enzyme. The size of computer 

programme for the task requires a parallel computing infrastructure, such as a 

cluster of Linux systems, running a batch queue processor to handle the work, 

such as Sun Grid Engine or Torque PBS. Virtual screening has been defined 

as the "automatically evaluating very large libraries (with thousands or millions 

of chemicals) of compounds using sophisitcated computer programmes. 24,25 

https://en.wikipedia.org/wiki/Drug_discovery
https://en.wikipedia.org/wiki/Drug_discovery
https://en.wikipedia.org/wiki/Drug_discovery
https://en.wikipedia.org/wiki/Small_molecule
https://en.wikipedia.org/wiki/Drug_target
https://en.wikipedia.org/wiki/Drug_target
https://en.wikipedia.org/wiki/Drug_target
https://en.wikipedia.org/wiki/Protein
https://en.wikipedia.org/wiki/Receptor_(biochemistry)
https://en.wikipedia.org/wiki/Enzyme
https://en.wikipedia.org/wiki/Parallel_computing
https://en.wikipedia.org/wiki/Infrastructure
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/Sun_Grid_Engine
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Virtual screening is a routinely employed and well-established 

computer-aided technique (in silico) for identification of anti-cancer drug 

designing. There are two virtual screening approaches: a. ligand-based and    

b. structure-based approach. The VS methodology emerged as a time saving 

and cost effective technique, capable of screening millions of compounds in a 

short time, in particular for discovering promissing anti-cancer drugs. Both 

ligand-based VS and structure-based VS methodologies have been highly 

useful potential for discovering anti-cancer agents. Virtual screening has 

witnessed significant change in terms of speed and hit rate and in future it is 

expected will replace the methodogy of high throughput screening.26  

 
 

Figure 2. Cavasotto CN. In Silico Drug Discovery and Design: Theory, 

Methods, Challenges, and Applications. CRC Press, Boca Raton, Fl, 2017.  
Alvarez J, Shoichet B (Eds). Virtual Screening in Drug Discovery. CRC Press, 
Boca Raton, Fl, 2019.  
 

Virtual screening methodologies were used in a recent research for 

designing new therapeutic drugs of Hepatitis B Virus (HBV), which is a major 

global health proble in many countries. Interferon alpha and nucleostide 

analogues are currently the standard-of-care for chronic HBV infection. 

However in practice, these antiviral agents have limited efficacy. Virtual 

Screening methodologies, which have a strong impact on drug discovery, 

were used in the development of novel drug candidates for treating Hepatisis 

B Virus. Some of these drugs are in clinical trials or are already available in 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/high-throughput-screening
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hospitals. Different virtual screening strategies have been applied to HBV in 

order to discover novel inhibitors. A recent review summarized the Virtual 

Screening efforts to identify and design novel HBV interventions. Scientists 

suggest that the combination of in silico methodologiers and in vitro tools (cell 

culture studies) can lead to faster validation of novel drug targets which could 

accelerate the HBV drug discovery and development efforts.27 

 

In silico methodologies. Computational biology models of 
celular behaviour 

 

In the past few years, the biological community has been exposed to a 

new buzzword: ‗systems biology’. Systems biology involves the 

comprehensive collection of experimental data concerning a biological system 

and the use of mathematical modelling to make testable predictions and gain 

insight about a biological system's behaviour. The intrusion of computational 

biology into ‗wet‘ laboratories (meaning laboratory work with experimental 

animals and cell cultures) inevitably produced a quiet revolution in which 

simulation tools (computer models) are used to complement experiments and 

accelerate the hypothesis generation and validation cycles of research. 

Modelling a cellular process can highlight which experiments are likely to be 

the most informative in testing model hypotheses, and allow testing for the 

effect of new drugs, effect of mutant phenotypes, or effect on cellular 

processes.28,29 

To understand the behaviour of a naturtal biological system requires 

models that integrate the various interactions that occur on these diverse 

spatial and temporal scales. Physiological cell analysis requires an 

understanding of the functional interactions between the key components of 

cells, organs, and systems, as well as how these interactions change in 

disease states. In order scientists to understand the complexity of biological 

systems they use mathematical and computational models to describe and 

analyse their behaviours and functions. This methodological approach has 

been advanced as an active area of research in recent years with 

mathematical models and experimental data to study how the intra- and inter-

scale interactions give rise to their collective behaviours and how they form 
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relationships with their environments is a central theme of systems biology 

research.30,31 

The in silico cell approach aims to describe the intracellular network of 

interest in a precise way, by numerically integrating the precise rate 

equations that characterize the ways macromolecules interact with each 

other. Systems biology that relates to metabolic and signal-transduction 

pathways and extends mathematical biology so as to address postgenomic 

experimental reality in living cells.32 

 

In silico modologies.Homology modeling.3D protein structure 

 

Determination of 3D protein structure by means of experimental 

methods such as X-ray crystallography or NMR spectroscopy is time 

consuming and not successful with all proteins, especially with membrane 

protein. The worldwide Protein Data Bank (wwPDB) (https://www.wwpdb.org/) 

contains approximately (2018) more than 140,000 experimentally determined 

protein three‐dimensional (3D) structures. Homology modeling is one of the 

computational structure prediction methods that are used to determine 3-

Dimentional (3D) structure of a protein from its amino acid sequence. It is 

considered to be the most accurate of the computational structure prediction 

methods. Homology modeling, is also recognized as comparative modelling of 

protein that allows to generate an unknown atomic resolution model of the 

"target" protein from its amino acid sequence and an experimental 3D 

structure of a related homologous protein (the "template"). In the absence of 

experimental data, model building on the basis of a known 3D structure of a 

homologous protein is at present the only reliable method to obtain the 

structural information. Knowledge of the 3D structures of proteins provides 

invaluable insights into the molecular basis of their functions. The recent 

advances in homology modeling, particularly in detecting and aligning 

sequences with template structures, distant homologues, modeling of loops 

and side chains as well as detecting errors in a model contributed to 

consistent prediction of protein structure, which was not possible even several 

https://www.wwpdb.org/
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years ago. There are many examples of the successful applications of 

homology modeling in drug discovery.
33,34 

In silico prediction of protein structures consists of 3 main stages, 

starting with predicting 3D models by template-based modelling and free 

modelling; continuing in the second stage with the assessment of the 

predicted 3D models and ending with the refinement of the predicted 3D 

models. The prediction of 3D models from amino acid sequences has made 

significant progress towards the accurate determination of native structures, 

especially with the use of templates from known structures of homologous 

proteins, and the progress has been well-documented in the last 25 years of 

the CASP experiments.35 

The in silico methods of Homology modeling has many applications in 

the drug discovery process. We know that drugs interact with receptors that 

consist mainly of proteins, protein 3D structure determination, and thus 

homology modeling is important in novel drug designing and discovery. 

Accordingly, researchers need the determination of protein interactions using 

3D structures of proteins that are built with homology modeling. This 

contributes greatly to the identification of novel drug candidates. Homology 

modeling plays an important role in making drug discovery faster, easier, 

cheaper, and more practical. At the same time as new modeling methods and 

combinations are introduced, the scope of its applications widens.36 

A typical example of homology modeling that was used to discover 

novel acetohydroxy acid synthase (AHAS, EC 2.2.1.6) inhibitors against 

Mycobacterium tuberculosis. The acetohydroxy acid synthase (AHAS) is a 

protein found in plants and micro-organisms. Several studies demonstrated 

that the plant acetoxhydroxy acid synthase is inhibitor of sulfometuron methyl 

which exhibit antituberculosis activity. However, the 3D structure of M. 

tuberculosis AHAS remains to be elucidated. Scientists performed homology 

modeling based on the Saccharomyces cerevisiae AHAS to build a 3D 

structure of M. tuberculosis AHAS. Through docking simulation and similarity 

searches, 23 novel AHAS inhibitors of Escherichia coli AHAS II enzymatic 

activity were identified. Five of the identified chemicals showed strong 

inhibitory effects against multidrug‐resistant and extensively drug‐resistant 

strains.37 

https://en.wikipedia.org/wiki/Protein
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In silico methodologies. Molecular docking approach  

 

Molecular docking has become an increasingly important tool for novel 

drug desing and discovery. In the field of molecular modelling docking is a 

technique which envisages the favoured orientation of one molecule to a 

second, when bound to each other to form a stable complex. Molecular 

docking denotes ligand binding to its receptor or target protein.38  

The molecular docking approach can be used to model the interaction 

between a small molecule (e.g. a drug) and a protein at the atomic level, 

which allow researchers to characterize the behaviour of small molecules in 

the binding site of target proteins as well as to elucidate fundamental 

biochemical processes. The docking process involves two basic steps: 

prediction of the ligand conformation as well as its position and orientation 

within these sites (usually referred to as pose) and assessment of the binding 

affinity (how good is the binding). These two steps are related to sampling 

methods and scoring schemes. From the scientific point of view, the aim of 

molecular docking is to give a prediction of the ligand-receptor complex 

structure using computation methods. Docking can be achieved through two 

interrelated steps: first by sampling conformations of the ligand in the active 

site of the protein; then ranking these conformations via a scoring function. 

Ideally, sampling algorithms should be able to reproduce the experimental 

binding mode and the scoring function should also rank it highest among all 

generated conformations.39 

Research on new drugs with improved therapeutic efficacy has 

successfully incorporated molecular modeling methods within a variety of drug 

design and discovery programmes. Molecular docking methods explore the 

ligand conformations adopted within the binding sites of macromolecular 

targets. This approach estimates the ligand-receptor binding free energy by 

evaluating critical phenomena involved in the intermolecular recognition 

process. Scientists use a variety of docking algorithms (available through 

databases), but in practice an understanding of the advantages and 

limitations of each method is of fundamental importance in the development of 

effective strategies and the generation of relevant results in effective drug 
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design. Molecular docking, structure-based virtual screening  and molecular 

dynamics are among the most frequently used strategies in drug design and 

discovery due to their wide range of applications in the  analysis  of  molecular  

recognition events such as binding energetics, molecular interactions  and 

induced conformational changes.40 

 

  

 
Figure 3. Dastmalchi S, Hamzeh-minehround M, Sokuti B (Eds). Methods 

and Algorithms for Molecular Docking-based Drug Design and Discovery. IGI 
Global publ, Hershey, 2016. A schematic version of the docking procedure 
between a protein and potential ligand binders. One ligand forms a stable 
complex due to its physical and chemical compatibility with the protein.  

 

In silico methodologies. Virtual High-Throughput Screening 

 

Virtual High-Throughput Screening (vHTS) is a computational 

technique used for novel drug design, where large libraries of chemical 

compounds are evaluated for their potential to bind specific sites on target 

molecules such as proteins, and well-matched compounds tested. The 

chemical compounds that are chosen for these studies are small potential 

drug like molecules which are capable of modulating the function of the target 

proteins. These compounds are further optimized to act as a therapeutic drug 

against a targeted disease. Conventional experimental methods like High- 

Throughput Screening (HTS) continue to be the best method for rapid 
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identification of drug leads. The method identifies lead molecules 

(―promissing‖ new drugs) by performing individual biochemical assays with 

over millions of compounds. However, the huge cost and time consumed with 

this technology has lead to the integration of cheaper and effective 

computational methodology namely virtual High-Throughput Screening 

(vHTS). The methodology of vHTS is a computational screening method 

which is widely applied to screen in silico collection of compound libraries to 

check the binding affinity of the target receptor with the library compounds [1]. 

This is achieved by using a scoring function which computes the 

complementarity of the target receptor with the compounds. HTS and vHTS 

are complementary methods and vHTS has been shown to reduce false 

positives in HTS. Several vHTS strategies have been practiced and the 

technique is being continuously optimized for better performance.41-45 

In recent years, research using the methodology of vHTS discovered 

highly valued drugs. This success in part emerged from a structure-based 

research approach. A review (2016) collected important papers on the role 

and methodology of ligand-, structure- and fragment-based computer-aided 

drug design computer aided drug desing (CADD), virtual high throughput 

screening (vHTS), de novo drug design, fragment-based design and 

structure-based molecular docking, homology modeling, combinatorial 

chemistry and library design, pharmacophore model chemistry and 

informatics in modern drug discovery.46 

A recent example of vHTS methodology used for potential drug targets 

of Calcium/calmodulin-dependent protein kinase IV (CAMKIV), associated 

with many diseases, including cancer and neurodegenerative disorders. 

Researchers investigated the possibility to be considered as a potential drug 

target. Scientists used the 3D structure of CAMKIV to identify new inhibitors 

for possible therapeutic intervention by employing virtual High-Throughput 

Screening of 12,500 natural compounds (ZINC database). From the analysis 

40 compounds showed significant docking scores (−11.6 to −10.0 kcal/mol). 

These compounds were selected and further filtered through Lipinski rule 

(Lipinski rule of 5 helps in distinguishing between drug like and non drug like 

molecules. It predicts high probability of success or failure due to drug 

likeness for molecules) and drug likeness parameter to get best inhibitors. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2586130/#R01
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Docking results are indicating that ligands are binding to the hydrophobic 

cavity of the kinase domain of CAMKIV and forming a significant number of 

non-covalent interactions. Four compounds that showed excellent binding 

affinity and drug likeness were subjected to molecular dynamics simulation to 

evaluate their mechanism of interaction and stability of protein-ligand complex 

and thus can be selected as ligands for therapeutic intervention to address 

CAMKIV associated diseases.47 

 

Quantitative structure activity relationship (QSAR) methods 

 

Quantitative Structure–Activity Relationship (QSAR) analysis is a 

ligand-based drug design method developed in 1964 by Hansch and Fujita.  

QSAR methodology has made many advances in the last 50 years and 

remains an efficient method for building mathematical models, which attempts 

to find a statistically significant correlation between chemical structure and 

continuous properties or categorical/binary (active, inactive, toxic, nontoxic, 

etc.) biological or toxicological properties using regression and classification 

techniques, respectively.48 

In the last decades, QSAR has undergone several transformations, 

ranging from the dimensionality of the molecular descriptors (from one-

dimension, 1D, to nD) and different methods for finding a correlation between 

the chemical structures and the biological property. Initially, QSAR modeling 

was limited to small series of congeneric compounds and simple regression 

methods. Now, QSAR modeling has grown, diversified, and evolved to the 

modeling and virtual screening of very large data sets comprising thousands 

of diverse chemical structures and using a wide variety of machine learning 

techniques.49,50  

The Organization for Economic Cooperation and Development (OECD) 

developed a set of guidelines that the researchers should follow to achieve 

the regulatory acceptance of QSAR models as long as they follow erain 

principles.51 

QSAR modeling in the early stages of drug discovery represents a 

time- and cost-effective tool to discover promissing novel compounds and 
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lead candidates. Analyzing the examples of QSAR-based virtual screening 

available in the literature, one can see that many of them led to the 

identification of promising lead candidates. However, along with success 

stories, many QSAR projects fail on the model building stage of new drugs. 

This is the result of the lack of understanding that QSAR is highly 

interdisciplinary and application field as well as general ignorance of the best 

practices in the field.52,53 

 
 

 
Figure 4. Roy K. Quantitative Structure-Activity Relationsips in Drug Design, 

Predicitve Toxiciology, and Risk Assessment. IGI Global, Hershey, 
Pennylvania, 2016. In the last decades, QSAR methodology has undergone 
several transformations, ranging from the dimensionality of the molecular 
descriptors (from 1D to nD) and different methods for finding a correlation 
between the chemical structures and their biological properties. 

 

Hologram quantitative structure activity relationship (HQSAR) 

 

QSAR techniques have proven to be extremely valuable in 

pharmaceutical research and the design of novel drugs with high theurapeutic 

efficacy, particularly 3D QSAR. In the last decade scientists developed 

additional more sophisticated QSAR techniques, such as Comparative 

Molecular Field Analysis (CoMFA), Comparative Molecular Similarity Indices 

Analysis (CoMSIA) and Hologram Quantitative Strucutre Activity Relationship.   

Hologram QSAR (HQSAR) is a new method, a distinctive QSAR 

procedure where there is no need for precise three-dimensional (3D) 

information about the ligands. In this method, the molecule breaks to a 
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molecular fingerprint encoding the frequency of occurrence of various kinds of 

molecular fragments. Simply, the minimum and maximum length of the 

fragments depends on the size of the fragment to be included in the hologram 

fingerprint.54 

HQSAR avoids many of the problems associated with classical or 3D 

QSAR approaches. Only 2D chemical structures and activity are required as 

input—no complex descriptor selection process or 3D molecular alignment is 

required. HQSAR converts the molecules of a data set into counts of their 

constituent fragments. The patterns of fragment counts from dataset 

molecules are then related to observed biological activity data using Partial 

Least Squares (PLS) analysis. Both steps, fragment counting and PLS 

analysis, are very fast. Nevertheless, the method is robust and highly 

predictive for many data sets. The general performance and behaviour of the 

new method HQSAR can me examined by performing HQSAR analyses on a 

number of data sets for which previous QSAR studies have been published. 

The results showed that HQSAR works by identifying patterns of substructural 

fragments relevant to biological activity in sets of bioactive molecules and 

unlike maximal common subgraph algorithms and the Stigmata algorithm 

which seek structural commonalities, HQSAR yields a predictive relationship 

between substructural features in the data set and biological activity using 

partial least squares analysis.55,56 

 

Figure 5.  Three-dimensional model of discodermolide into the β-tubulin 

binding site generated using the most important HQSAR molecular fragments 

related to antiproliferative activity. Bibliography. Salum LB, Andricopulo AD. 

Fragment-based QSAR: perspectives in drug design. Molec Divers 13:277-

285, 2009.  
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Comparative molecular field analysis (CoMFA) and 
Comparative molecular similarity indices analysis (CoMSIA)  

 

Scientists developed the desire to readily visualize molecular QSARs in 

three-Dimensional form (3D), taking into account both whole molecule shapes 

as well as local structural features of a noncongeneric series of compounds 

using molecular graphic techniques provided the impetus for the development 

of Comparative Molecular Field Analysis (CoMFA). The 3D-QSAR 

approaches are usually much more complex partly because more 

heterogeneous structures are often involved. So, the result of this desire was 

CoMFA as a method for three-dimensional (3D) quantitative structure-activity 

relationships (3D-QSAR) at Tripos. Although the concept of the approach has 

been known as DYLOMMS (dynamic lattice-oriented molecular modeling 

system) for over a decade, it was not until recent years that the method 

became widely used after it was reborn as CoMFA in 1988 and the  

methodology has been patented and the program is available as a QSAR 

package in SYBYL.57-59 

Comparative Molecular Similarity Indices Analysis (CoMSIA) is a 

ligand-based, alignment-dependent, and linear 3D-QSAR method that is a 

modified version of CoMFA. The method CoMSIA is recognized as one of the 

new 3D QSAR approaches that is used generally in the drug discovery 

process to locate the common characteristics, essential for the proper 

biological receptor binding. This method deals with the steric and electrostatic 

characteristics, hydrogen bond acceptors, hydrogenbond donor and 

hydrophobic fields.60 

 A study developed a chemical feature-based pharmacophore model 

for Tumor Necrosis Factor-α converting enzyme (TACE) inhibitors. A five 

point pharmacophore model having two hydrogen bond acceptors, one 

hydrogen bond donor and two aromatic rings with discrete geometries as 

pharmacophoric features was developed. The pharmacophore model so 

generated was then utilized for in silico screening of a database. This 

validated pharmacophore model was also used for alignment of molecules in 

CoMFA and CoMSIA analysis. The contour maps of the CoMFA/CoMSIA 

models were utilized to provide structural insight for activity improvement of 
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potential novel TACE inhibitors. The pharmacophore model so developed 

could be used for in silico screening of any commercial/in house database for 

identification of TACE inhibiting lead compounds, and the leads so identified 

could be optimized using the developed CoMSIA model.61 

 

Three-dimensional (3D) pharmacophore mapping or modeling 

  

The concept of pharmacophore was first introduced in 1909 by Ehrlich 

who defined the pharmacophore as ―a molecular framework that carries the 

essential features responsible for a drug‘s biological activity‖. The basic 

pharmacophore concept still remains unchanged, but its intentional meaning 

and application have been expanded. According to IUPAC pharmacophore 

model is ―an ensemble of steric and electronic features that is necessary to 

ensure the optimal supramolecular interactions with a specific biological target 

and to trigger (or block) its biological response‖.62,63 

Ligand-based pharmacophore mapping/modeling has become a key 

computational strategy for facilitating drug discovery in the absence of a 

macromolecular target structure. It is usually carried out by extracting 

common chemical features from 3D structures of a set of known ligands 

representative of essential interactions between the ligands and a specific 

macromolecular target. Various automated pharmacophore generators have 

been developed, including commercially available software.64,65 

Structure-based pharmacophore mapping/modeling. Structure-based 

pharmacophore modeling works directly with the 3D structure of a 

macromolecular target or a macromolecule–ligand complex. The protocol of 

structure-based pharmacophore modeling involves an analysis of the 

complementary chemical features of the active site and their spatial 

relationships, and a subsequent pharmacophore model assembly with 

selected features.66 

The field of anticancer drug research has achieved substantial 

progress from the recent advances in molecular biology, chemoinformatics 

and chemogenomics. Several new biomolecular targets have been identified 

and investigated for new drug discoveries. The role of pharmacophore 
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mapping and pharmacophore-based virtual screening approaches for 

identification of novel anticancer drugs has been extremely useful. Scientists 

researching modern drug design and discovery expect that pharmacophore-

based drug discovery strategy will aid significantly in the upsurge of novel 

anticancer drugs.67 

 

Figure 6. Overview of Pharmacophore-based Drug Design. Ligand-based 

pharmacophore modeling and structure-based protein-ligand docking are both 

recognized as integral parts of drug discovery, each method offering particular 

strengths. Ligand-based technologies, such as 3D-pharmacophore modeling, 

are fast and thus useful for quickly screening large compound databases. 

 

Molecular dynamics simulations in drug design and discovery 

 

The results of Molecular Dynamics (MD) simulations can provide 

scientists with plentiful dynamical structural information on biomacromolecules 

but also a wealth of energetic information about protein and ligand 

interactions. Such information is very important to understanding the 

structure-function relationship of the target and the essence of protein-ligand 

interactions and to guiding the drug discovery and design process. Molecular 

dynamics simulations have been applied widely and successfully in each step 

of modern drug discovery. In particular, molecular dynamcis simulations have 

been used widely in the investigation of pathogenic mechanisms of diseases 

which are caused by protein misfolding, in virtual screening, and in 

investigating drug resistance mechanisms caused by mutations of the target. 

These issues are very difficult to solve by experimental methods alone. 
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Researchers suggested that in the future, molecular dynamics simulations 

can have wider applications with the further improvement of computational 

capacity and the development of better sampling methods and more accurate 

force fields together with more efficient analysis methods.68 

Molecular dynamics simulations has improved substantially in the last 

decade and can provide rapid processes (millisecond) at atomic resolution 

for many biologically relevant systems. These simulations appear poised to 

exert a significant impact on how new drugs are designed and discovered.  

Future results and expected enhancement will make molecular dynamics 

simulations a very efficient methodlogy for comuter-aided design and 

discovery of novel drugs.69 

As the financial costs of developing a commercial drug are increasing 

in the last decade, it is hoped that in silico methodologies will reform the drug 

discovery to expedite drug discovery by narrowing the search to the most 

promising lead compounds for clinical testing. In recent years Molecular 

Dynamics simulations has become a particularly important tool in drug 

discovery by more sophisticated hybrid classical/quantum mechanical 

approaches and able to offer extraordinary insights into ligand–receptor 

interactions.70 

Microarray analysis in drug design and discovery  

 

Microarray technology is a novel tool in molecular biology, capable of 

quantitating hundreds or thousands of gene transcripts from a given cell or 

tissue sample simultaneously. A microarray has thousands of DNA fragments 

or oligonucleotides of known sequence arrayed in a known sequence of rows 

and columns on a chip.71 

The expectation that microarray technology will play a large role in 

shaping the future of pharmaceutical development and diagnostics has greatly 

increased due to new products and applications. Microarrays for gene 

expression have made a profound impact in the pharmaceutical and 

biomedical worlds. Information from newer microarray technologies such as 

Comparative Genomic Hybridisdation (CGH), Genome-wide location analyis 

or CHlP-on-chip, splice variant microarrays, and microRNA interference.72  
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a. Comparative Genomic Hybridisation (CGH) is a technique which is 

used to look for genomic gains and losses or for a change in the number 

of copies of a particular gene involved in a disease state. 

b. Genome-wide location analysis, or ChIP-on-chip, is a technique for 

isolation and identification of the DNA sequences occupied by specific 

DNA binding proteins in cells. 

c. Splice variant microarrays. Splicing plays a significant role in 

physiology and disease. Splice variants are variable sequences of RNA 

produced from the same gene in DNA, resulting in the creation of 

different proteins potentially affecting cellular regulation. 

d. RNA interference (RNAi) microarrays. RNA interference, or RNAi, is a 

powerful mechanism for inhibiting gene expression. RNAi appears to be 

a highly potent and specific process which is actively carried out by the 

RNA interference machinery. 

 

 

Figure 7. Matson RS. Applying Genomic anfd Proteomic Microarray 
Technology in Drug Discovery. CRC Press, Boca Raton, GFL, 2013 (2nd 
edition) Microarray techniques play an increasingly significant role in drug 
discovery. On the right: A DNA microarray is a collection of synthetic DNA 
probes attached to designated location, or spot, on a solid surface. The 
resulting "grid" of probes can hybridize to complementary "target" sequences 
derived from experimental samples to determine the expression level of 
specific mRNAs in a sample.  
 

These DNA microarray applications can be combined with gene 

expression data and applied to the drug discovery process and health 

diagnostics. Researchers have used DNA microarrays to conduct large-scale 

experiments that have produced large quantities of genetic information and 
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helped identify the mechanisms of disease. Also, these techniques can 

identify disease subphenotypes, predict disease progression, assign function 

to previously unannotated genes, group genes into functional pathways, and 

predict activities of new compounds.72 

 

Three dimensional printing (3D) in drug designing 

  The three-dimensional printing includes a wide variety of 

manufacturing techniques, which are all based on digitally-controlled 

depositing of materials (layer-by-layer) to create freeform geometries. 

Therefore, three-dimensional printing processes are commonly associated 

with freeform fabrication techniques. For years, these methods were 

extensively used in the field of biomanufacturing (especially for bone and 

tissue engineering) to produce sophisticated and tailor-made scaffolds from 

patient scans. In the last decade 3D printing started to be used in the 

formulation of customized pharmaceuticals and for better drug delivery.73 

The 3D printing has become one of the most revolutionary and 

powerful technology in the growing demand for customized drugs and medical 

devices. The current developments in 3D printing include multifunctional drug 

delivery systems with accelerated release characteristic, adjustable and 

personalized dosage forms, implants and phantoms corresponding to specific 

patient anatomy as well as cell-based materials for regenerative medicine. A 

recent review (2018) summarized the newest achievements and challenges in 

the field of 3D printing of novel pharmaceuticals and in biomedical research 

offering clear advantages in the rational design and discovery of drugs.74 

In 2015, Food and Drug Administration (FDA) in the USA approved a 

3-dimensional-printed drug product which is indicative of a new chapter for 

pharmaceutical manufacturing. FDA-approved drug Spritam®, which is 

manufactured using 3D printing technology. Spritam is used for the treatment 

of epilepsy, pils are designed so that a large dose of active ingredient (1,000 

mg of levetiracetam) disintegrates within seconds after taking a sip of water 

[https://www.fda.gov/drugs/news-events-human-drugs/cder-researchers-explore-

promise-and-potential-3d-printed-pharmaceuticals](accessed, October, 2019).  

 

https://www.fda.gov/drugs/news-events-human-drugs/cder-researchers-explore-promise-and-potential-3d-printed-pharmaceuticals
https://www.fda.gov/drugs/news-events-human-drugs/cder-researchers-explore-promise-and-potential-3d-printed-pharmaceuticals
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Deep Learning in pharmaceutical research and rational drug 
discovery 
 

Over the past decade, deep learning has achieved remarkable success 

in various artificial intelligence research areas. Evolved from the previous 

research on artificial neural networks, this technology has shown superior 

performance to other machine learning algorithms in areas such as image and 

voice recognition, natural language processing, among others. The first wave 

of applications of deep learning in pharmaceutical research has emerged in 

recent years, and its utility has gone beyond bioactivity predictions and has 

shown promise in addressing diverse problems in drug discovery.There are 

many examples in the scientific literature for deep learning applications 

covering rational molecular design of novel drugs, bioactivity prediction of a 

group of chemical, synthesis prediction and biological image analysis.75,76 

The algorithm Atomwise developed is similar to the Deep Learning 

Neural Networks used by DeepMind, a startup that was acquired by Google 

last year for $628 million. While Google has been happy to let the (Artificial 

Intelligence) AI teach itself how to play Space Invaders, Atomwise has asked 

it to learn complex biochemical principles instead. 

 

Figure 8. A Computer simulation of how Atomwise algorithm uses machine 
learning to research for new drugs. Image Atomwise. 

http://motherboard.vice.com/blog/google-just-bet-500-million-that-ai-can-fix-search
http://motherboard.vice.com/blog/google-just-bet-500-million-that-ai-can-fix-search
http://motherboard.vice.com/read/machine-learning-goes-still-deeper-takes-on-49-vintage-video-games
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“In silico” methodologies emerged as powerful techniques in 

drug design 

Over the last few decades, ―in silico‖ methodologies (computer-aided or 

via computer simulation) for drug design and discovery have emerged as 

powerful techniques playing a crucial role in the development of novel and 

more efficient therapeutic agents. These rational approach methods have 

improved the innovation in the pharmaceutical industry by offering the 

advantage of delivering new drug candidates more quickly and at a lower 

cost. Also, they increase the chance of success in many stages of the 

discovery process by facilitating access to large amount of stored organic 

chemical compounds, proteins, pharmaceutics, cell behaviour, etc. These 

methods transformed the massive complex biological data into workable 

knowledge. In the last decades, biological and chemical information has been 

generated at an ever-increasing pace, marking the entrance in the so-called 

―big data‖ era. The scientific community acquired new opportunities to link 

drugs to diseases and to improve efficiency of novel drugs although this 

relationship relies on complex mechanisms. Researchers had the opportunity 

for better understanding of the relationships between drugs and their 

biological targets, and between targets and diseases. The use of rational drug 

design (computer–aided simulations, or ―in silico‖ methods), provided 

scientists with the tools for a knowledge-driven approach that can yield 

valuable information about the interaction patterns between drug moleculers 

and proteins in diseasesd organs. Furthermore, the availability of 

supercomputers, parallel processing, and advanced softwares have greatly 

facilitated the rate of lead identification in pharmaceutical research. The 

results until now showed that the integration of classical experimental work 

and ―in silico‖ approaches holds great promise in the rapid discovery of novel 

pharmaceuticals and great variety of therapeutic agents.77-83 
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